Argonne°

AAAAAAAAAAAAAA ORY

Using Area C iétector As A General
Purpose Processmg Framework

Ned Arnod b
Sinisa Veseli \ W\ s \\ o/
Argonne National Laboratory .~

EPICS Collaboration Meeting
June 2018 -~ KX

U.S. DEPARTMENT OF
EPICS Collaboration Meeting - June 2018 ° ENERGY

Office of
Science

APSU Data Acquisition System

Technical
Systems

DAQ Front-ends

DAQIOCs

* Provides time correlated/synchronously sampled data

* Can be used for commissioning, troubleshooting,
performance monitoring and early fault detection

* Separated from operational systems to allow
troubleshooting during user operations

EPICS Collaboration Meeting - June 2018

v

XS

Dedicated
Subnet(s)
I

DAQ Infrastructure

\DAQ Data
| Streams

>
>

s
|

|
\

DAQ/DM/External)\

Services \

I T
N

“'pagpata }‘ = ‘{ = ‘{ """"""
Files

SDDS Tools (Beam Loss Posq

Mortem

Q Monitorin
& Control

Performance
CA/PVA Tools Monitoring

Octave Analy Lost Injection
Programs Shot

Can acquire data from several subsystems at various
sample rates

Supports continuous/triggered acquisition, static
parameters, slow (in development) and fast data
Scalability

Ability to route data to any number of applications

DAQ Usage Example (L. Emery)

Data from SDDS file rtfbStream.20180205093805001 .fft, table 1 ° Suppression of 147Hz Vibration source in the
ring using the DAQ system + post-processing
with FFT

* Vacuum chamber was vibrating and introduced

a Bx field; shims were inserted between poles
and vacuum chamber (S37AQ3, S37AQ2)

(AR R DIDI DI IO DI DT 1]
RN
=4
al
=

QAP

Data from SDDS file rtfbStream.20180205135257001 .fft, table

I o v

_b TTTT ITrTIT

60 1465 1470 1475 148.0
f
FFTIS*AP4* as a function of f

—3.0,

—3.5.

* Identification of the nearest quadrupoles
required 400 channels, 20 seconds of

continuous DAQ data to get 0.5Hz precision
* This allowed separating line frequencies of 20 :
pumps a
* Figure on the top is showing data before 1?26.0 R 1:-7.0 v e iho
shimming, while the one on the right is showing f
results after shimming FRETS*AP 4% as a function of f

‘ EPICS Collaboration Meeting - June 2018
N———— 3

Prototyped several options:

DAQ IOC * Custom TCP

« EPICS V4 PVA
- AMQP (QPID)

\

Analysis
Tools

Analysis

Logging Tools Tools

Ancillary PV Paf’;f;fter Real-Time Real-Time Channel Data || | Channel Data
Logging Acquisition Processing Processing Streaming PVs

Monitoring & Control (Timestamp Retrieval)

= [
Uses Asyn/AD Framework: Varies by technical system:

* Data is packed into ND * MRF Event Receiver
Monitoring & Arrays * APS Event Receiver

« NTP/PTP

Event System

Control Apps

‘ EPICS Collaboration Meeting - June 2018
o\—ff‘ ‘

Asyn/AD Framework Usage: Initial Approach

= Use Asyn/AD Framework to collect and process data from technical subsystems
— Driver packs channel data into ND Arrays, and passes it to real-time processing plugins
— ND Array attributes describe the content (i.e., what data is in ND Array, how is it packed)

— Communication plugin streams ND Arrays to remote Data Collector service where it is
unpacked, stored, and (possibly) forwarded to the Data Distribution Service (Message
Broker)

= DAQ Data Packet

List of Parameters (NDArray Attributes)
(including list of channels that follow)

Block of Time-series Data

Timestamp Channel 1 Channel 2 Channel 3 Channel 4 ese Channel N

ém'-:‘['"':i\\ EPICS Collaboration Meeting - June 2018

Challenges

= How do we pack data?
— ND Array was designed for homogeneous data; DAQ must handle multiple data types
— Timestamps are doubles, channel data may not be
— DAQ channels may have different data types

= How do we handle runtime configuration changes?
— Must be able to turn on/off different channels without restarting various system components
— Configuration changes result in ND Array packing scheme changes

= How do we provide DAQ users with easy access to individual channel data?
— Cannot be done without custom clients that know how ND Array was packed

= How do we handle slow vs fast data?
— Must avoid significant overhead in memory/network bandwidth

= How do we efficiently access/process channel data in real-time DAQ processing
plugins?
— Unpacking ND Array data in plugins themselves is very inefficient

Possible Solution

= Modify AD framework to pass DAQ structures through plugins; those could then be
easily exposed as EPICS v4 structures over PV Access protocol

EPICS Collaboration Meeting - June 2018

DAQ AD Core Extension

= @Goals:

1) Minimal modification of AD core code that allows us to pass arbitrary data through
processing plugins (without having to pack/unpack ND arrays in plugins themselves)

2) Backwards compatibility: no existing AD plugins need to change
3) Ability to retrieve data from IOC via standard PVA APIs and tools like pvget
= Strategy: use NDArray/NDArrayPool as base classes for extending the AD Core
functionality
= AD Core modifications: 6 lines of code in NDArray.h and about 25 lines of code in
NDArrayPool.cpp:
— New NDArrayPool class methods for management of extended ND arrays
— Modifications to keep track of ELL node offset

= Custom DAQ Code:

— RtfbNDArray (derived from NDArray, incorporates custom v4 structure) and
RtfbNDArrayPool classes (derived from NDArrayPool, manages RtfobNDArrays)

— Driver code uses custom pool and manipulates RtfbNDArray

— RtfbNDPIluginPva exposes RtfbNDArray via PV Access channel (plugin uses dynamic cast
to convert NDArray pointer to RtfbNDArray pointer)

EPICS Collaboration Meeting - June 2018

DAQ AD Core Extension

= Advantages:

Approach is completely backwards compatible (no need to change existing plugins)
Requires minimal modifications to AD Core
No loss in performance due to packing/unpacking ND Arrays in plugins

Custom plugins can expose data as v4 structures easily; those can be accessed using
standard client tools:

$ pvget rtfb ext ndarray
rtfb ext ndarray
structure

uint ArrayId O
double[] TimeStamp []

float[] PosX 0 []
float[] PosY 0 []
float[] PosX 1 []
float[] PosY 1 []

= Drawbacks:

Custom plugins that use classes derived from NDArray must downcast (performance hit)
Design not quite suitable for a general purpose processing framework

Better solution would require AD Core refactoring/redesign, and would not be
backwards compatible

EPICS Collaboration Meeting - June 2018

Final Comments

= Current DAQ production code:
— Uses EPICS 3.15.x, AD Core 2.5
— Mixture of old (use NDArray) and new (use DAQ extension) style IOCs

= DAQ development will transition to EPICS7, AD Core 3.2

= PR #324 for DAQ AD Core (merged recently): will allow us to
keep up with AD Core changes

EPICS Collaboration Meeting - June 2018

